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THE INDUCED INNOVATION HYPOTHESIS AND

U.S. PUBLIC AGRICULTURAL RESEARCH

BENJAMIN W. COWAN, DAEGOON LEE, AND C. RICHARD SHUMWAY

Applicability of the induced innovation hypothesis—that a change in relative input prices induces
innovation to economize use of the increasingly expensive input (Hicks 1932)—is examined for
U.S. public agricultural research. A reduced-form test is developed using input prices from the
agricultural production sector, expenditures from the public research sector aimed at develop-
ing new technology to save specific agricultural inputs, and variables to control for innovation
marginal cost differences and nonhomotheticity. Unlike recent demand-side studies that soundly
reject the induced innovation hypothesis for agriculture, support for the hypothesis is found for
several input pairings through these tests of public agricultural research using state-level panel
data.
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The induced innovation hypothesis (IIH)—
that a change in relative input prices induces
innovation to economize use of the increas-
ingly expensive input (Hicks 1932)—has had
a profound impact on both macroeconomic
and microeconomic production literature.
With the development of the microeconomic
foundations of induced innovation theory
(e.g., Ahmad 1966; Kamien and Schwartz
1968; Binswanger 1974a), empirical testing
began with Hayami and Ruttan’s (1970)
examination of the contrasting paths of tech-
nological development in Japanese and U.S.
agriculture. It was followed by Binswanger’s
(1974b) rigorous testing of the hypothe-
sis for multiple inputs in U.S. agriculture
using newly developed duality concepts. The
hypothesis has since been tested extensively
in many countries and industries. While it
received nearly consistent support in the first
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two decades of empirical testing, tests con-
ducted with improved methods and data sets
during the last two decades have been far less
supportive of the hypothesis.

Despite widespread testing, remarkably
little attention has been given to the neces-
sary conditions required for a valid test of the
hypothesis.1 The most common test has been
to determine whether input quantity shares
(or ratios) in an innovation implementing
industry are negatively related to own input
prices (or ratios) lagged sufficiently to enable
technology development and implemen-
tation to result and thus enable relatively
expensive inputs to be saved. A variety of
specific test procedures have been devel-
oped, including econometric (e.g., Armanville
and Funk 2003), time series (e.g., Thirtle,
Schimmelpfennig, and Townsend 2002), and
nonparametric (e.g., Chavas, Aliber, and
Cox 1997). Most assume (often implicitly)
that production is homothetic and that shifts
in the innovation possibility curve (IPC)
that accounts for technical change (e.g.,
Ahmad 1966; Armanville and Funk 2003)

1 To illustrate the attention given to this hypothesis, a Google
Scholar search on February 17, 2014 for the exact term “induced
innovation hypothesis” anywhere in the article generated 1,240
references. A search for the term “induced innovation” anywhere
in the article generated 7,760 references.
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are neutral.2 With homothetic production
and neutral shifts in the innovation possi-
bility curve (IPC), consistency with the IIH
requires that input price changes influence
movements along the isoquant and the IPC
in the same direction.

Nonhomothetic production in the innova-
tion implementing industry and nonneutral
marginal costs in the innovation creating
industry can each cause nonneutral shifts
in the IPC in the innovation implementing
industry in the opposite direction from those
resulting from induced innovation. Con-
sequently, they may also more than offset
the induced innovation shifts resulting from
changes in input prices in the implementing
industry. In other words, an increase in the
relative price of an input raises the marginal
benefit of innovation that saves that input
in production. However, the marginal cost
of innovation also varies across inputs, a
point that has been largely ignored in the
literature.3 If these marginal costs are not
accounted for, and particularly if innovation
marginal costs are positively correlated with
the prices of inputs they are intended to save,
the induced innovation hypothesis could be
valid even though some previous tests have
failed to find evidence to support it.

Despite the large number of empirical tests
of the IIH, nearly all have considered only
the impact of relative price movements in the
innovation implementing industry without
regard to relative prices in the innovation
creating industry. Thus, they are really only

2 The innovation possibility curve is the envelope of all isoquants
that firms might develop within a specified time period given the
research and development budget.

3 A few warning voices have been raised about the failure to
fully consider the economics of innovation supply. The warnings
began very early in the empirical testing period. For example,
Nordhaus (1973, 213) cautioned: “The induced innovation model
has let a very restrictive assumption slip in the back door.… The
crucial assumption is the stationary nature of [the innovation
possibility function]: that is, that the shape of the frontier is
independent of the path.” The next year Binswanger (1974b,
964–65) echoed: “Suppose innovation possibilities are neutral
and factor prices are exogenous to the industry. Then a measured
factor-saving bias should be associated with a rising factor price
and vice versa…. If, on the other hand, innovation possibilities
are not neutral, then it is possible that a factor-using bias is
associated with a rise in the price of the corresponding factor….
All induced innovation can do is to offset the fundamental bias to
some extent.” More than two decades later, Olmstead and Rhode
(1993, 110) noted, “The induced innovation hypothesis puts too
many eggs in the demand-side basket…. [T]he outcome of the
induced innovation process depends on the nature of the trade-
offs between innovation possibilities.” Popp (2002, 161) added:
“Because the induced innovation literature treats the existing
stock of knowledge on which inventors can build as exogenous, it
ignores the determinants of that base of knowledge and therefore
cannot fully endogenize the path of technological change.”

partial tests of the IIH based on demand side
influences (Popp 2002). The only previous
study to shed light on the role of prices in
the innovation creating industry was Liu and
Shumway (2009). However, their study did
not test the hypothesis; rather, using non-
parametric methods, it computed the rank
order of the marginal costs of creating tech-
nology to save an equal percent of each of
four inputs in order to be consistent with the
induced innovation hypothesis.4 Although
they also did not consider prices in the inno-
vation creating industry, the studies by Popp
(2002) and by Crabb and Johnson (2010) did
include control variables to explicitly address
supply side issues in their examination of the
IIH in the energy sector.

It is important to recognize that Hicks’
statement of the induced innovation hypoth-
esis did not imply that implemented technical
change would actually substitute relatively
cheap inputs for expensive ones but only
that input prices would spur invention to
economize the use of expensive inputs. Con-
sequently, whether the failure to consider the
endogeneity of the innovation possibilities
function is attributed to a misinterpretation
of Hicks’ theory of induced innovation or to
relying on easily measured data, the upshot
is that prior empirical tests of the innovation
process are nearly all fundamentally flawed.
Except for Popp (2002), Crabb and Johnson
(2010) and a few others, “[a]ll tests of the
induced innovation hypothesis have main-
tained the hypothesis that the marginal cost
of developing and implementing technologies
that save one input is the same as for saving
an equal percent of another input” (Liu and
Shumway 2009).5

We approach this problem by using a
reduced-form approach analogous to Popp’s
(2002) and Crabb and Johnson’s (2010).
For theoretical consistency, we augment the
Popp and Crabb-Johnson approaches by
maintaining the hypothesis of a homoth-
etic production function in the innovation
creating industry. We test whether changes

4 Their analysis focused on several major U.S. agricultural pro-
ducing states. The overriding challenge to conducting a legitimate
test using structural equations is a lack of reliable marginal cost
data in the innovation creating industry.

5 A few recent studies (e.g., Karmarkar-Deshmukh and Pray
2009, Verdolini and Galeotti 2011, and Costantini and Mazzanti
2012) build on Popp’s (2002) work by controlling for supply-side
factors (in particular, knowledge stocks) in the innovation process
of the energy sector.
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in relative prices in the innovation imple-
menting industry induce changes in relative
investments in the public innovation creat-
ing industry to develop technology to save
inputs that become relatively more expen-
sive. Popp (2002) and Crabb and Johnson
(2010) focus on only one input (energy) and
use time-series variation in energy prices
to examine whether higher prices spur the
development of patents on energy-saving
technology. In contrast, our tests focus on
four inputs (land, labor, energy, and fertil-
izer) used in U.S. agriculture (the innovation
implementing industry). In addition, we
use state-by-time variation in input prices
to examine the applicability of the induced
innovation hypothesis. In particular, our pro-
cedure utilizes a state-level panel data set on
input prices in the innovation implementing
industry (agriculture) and expenditures in
the innovation creating industry (public agri-
cultural research) to examine the effect of
relative input price movements in the former
on investments in the latter designed to save
those inputs. Although we ignore resource
allocation in private agricultural research,
we expect public research allocations to be
sensitive to relative prices in the agricultural
production industry. This is consistent with
the stated objectives of the U.S. Department
of Agriculture and the State Agricultural
Experiment Stations, which conduct most of
the public research, to develop technology
of value to production agriculture. It is also
supported by the political economy expecta-
tion that farmers, when induced by changes in
relative prices, press public research institu-
tions to develop new technology to save the
more expensive inputs (Hayami and Ruttan
1971).

By using a state-level panel data series of
prices and public research expenditures along
with appropriate estimation procedures, we
are able to control for innovation marginal
costs that have been overlooked by earlier
research on induced innovation. Allowing
for the possibility that such costs vary across
states (perhaps because of differentiated
past experience with research on particular
topics), we control for the differences by
including lagged public research expendi-
ture ratios in the model. In addition to the
advantages of panel data for dealing with the
marginal cost of innovation in our research,
our dependent variable (innovation effort)
is less lumpy than patent realization data
(which is positive only when highly stochastic

research is successful), an additional advan-
tage to our approach over Popp (2002) and
Crabb and Johnson (2010).

In the next section we develop the empir-
ical model and the control variables used
to determine the applicability of the IIH in
public research resource allocation decisions.
We then describe the data used for estima-
tion, including the procedure used to obtain
expenditure data on research to develop
technology to save each of four agricultural
inputs. The results reported in the subsequent
section indicate that relative input prices of
some, but not all, inputs do affect research
investments in ways that are consistent with
the IIH and cannot be fully explained by
pure randomness. We conclude in the final
section.

Empirical Model

Our empirical testing procedure focuses on
consistency of public research project funding
decisions with the IIH. We construct tests
to determine whether states with relatively
higher prices of an input in the innovation
implementing industry (agriculture) devote a
relatively greater portion of the budget in the
innovation creating industry (public research)
to developing technology to save that input.

To ensure that scale of research does not
affect the shape of the innovation possi-
bility curves, we maintain homotheticity in
“intended” outputs in the innovation creating
industry by specifying a two-level constant
elasticity of transformation (CET) decision
model. This model is the output equivalent
to the two-level constant elasticity of sub-
stitution (CES) production function often
specified for the innovation implementing
industry in the (potentially flawed) partial
tests of the IIH. Although more restrictive
than second-order Taylor expansions such
as the translog and quadratic, it has the
attractive features of “parsimony in param-
eter, ease of interpretation, computational
ease, and interpolative and extrapolative
robustness” (Kawagoe, Otsuka, and Hayami
1986, 529).

Let yi, i = f , a, l, e, represent the innovation
creating industry’s intended output quantities
of fertilizer, land, labor, and energy saving
innovation, respectively. Suppose input (X)
(which can be thought of as an aggregate
of scientist hours, scientist skill, scientific
support, and research facilities) produces a
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biological innovation output index, Yb(yf , ya),
and an energy innovation output index,
Ye(ye, yl), according to a two-level production
technology:6

(1) Xst = Gt[Ybst(yfst , yast), Yest(yest , ylst)]
where Gt[·] is permitted to vary across time t,
and s represents the state cross section. The
two-level CET functional form approximates
the innovation creation technology:

Xst = [γtY
ρ

bst + (1 − γt)Y
ρ
est]

1
ρ(2)

Ybst = [αsty
ρb
fst + (1 − αst)y

ρb
ast]

1
ρb(3)

Yest = [βsty
ρe
est + (1 − βst)y

ρe
lst]

1
ρe(4)

where α, β, γ, ρ, ρb, ρe are parameters, 0 ≤ γt ,
αst , βst ≤ 1, and ρ, ρb, ρe > 1 in order to ensure
concavity of the transformation function
and each subtransformation function. While
maintaining hypotheses of homotheticity (via
homogeneity) and constant elasticity of trans-
formation, the two-level structure allows for a
different elasticity of substitution within each
sublevel and between them. We allow α and
β to vary by state and time to reflect the fact
that the input requirement necessary to gen-
erate innovation that saves an additional unit
of f , a, l, or e may vary over these dimensions.
When multiplied by prices of research inputs,
input requirements determine marginal cost.
With research, marginal cost is not known
with precision because of the uncertainty sur-
rounding its production function. Expected
marginal cost is determined by both the cost
of research inputs and also the probability
of research success. It can be regarded as the
cost of research inputs required to save an
additional unit of f , a, l, or e divided by the
probability of research success.

In equilibrium, the input prices in the inno-
vation implementing industry are the output
prices in the innovation creating industry.
Assuming that the latter operates as though
it were a competitive firm, it would seek to
maximize industry profit subject to exoge-
nous expected output prices and aggregate

6 We initiate our two-level specification with input pairs com-
monly used in two-level CES specifications used for demand-side
tests of the IIH in agriculture. Land and fertilizer are paired
because of their extensive-intensive substitutability. Labor and
energy are paired because of labor-machinery substitutability.
However, the strength of logic for these pairings does not carry
over to the innovation creating industry, so alternatives will be
explored in the robustness section of the article.

input level:

(5) Max �iyistE(Pist) − X̄st(Y),

where E(P) is expected output price, X̄ is the
constrained aggregate input level, and i = f ,
a, l, e. The first-order conditions for con-
strained profit maximization can be
rearranged to give:

E(Pfst)yfst/E(Past)yast(6)

= (E(Pfst)/E(Past))
ρb/(ρb−1)

(αst/(1 − αst))
1/(1−ρb)

E(Pest)yest/E(Plst)ylst(7)

= (E(Pest)/E(Plst))
ρe/(ρe−1)

(βst/(1 − βst))
1/(1−ρe).

Although public agricultural research is
expected to respond to changing prices as
would a competitive firm, there are also
reasons why profit maximization in the
implementing industry may not be the pri-
mary guide for project selection and funding
decisions in the public sector. For exam-
ple, public research can be expected to
give more emphasis to research that may
be more basic or risky than would be selected
by the private-research sector. Also there
is potential for increased public research to
crowd out private research efforts and vice
versa (David, Hall, and Toole 2000). Conse-
quently, there are clear reasons why public
agricultural research resource allocation deci-
sions would not be driven as quickly by price
signals nor to the same extent that the IIH
would imply for a competitive innovation
creating firm. Nevertheless, assuming profit
maximization and competitive behavior as a
primary guide might not be too farfetched. In
recent literature, research and development
has been regarded as a typical example of a
mixed market where private firms and pub-
licly owned firms compete with each other.
When public sector R&D firms compete
with private firms whose principal behavioral
guide is profit maximization, the observed
behavior of public firms can mimic private
firms even though they pursue broader
objectives (Ishibashi and Matsumura 2006).

Since we maintain the joint hypothesis of
constant returns to scale in the public inno-
vation creating industry with the industry
behaving as a competitive firm, cost equals
revenue in equilibrium. Consequently, we
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use public expenditures on research aimed
to save each input as a proxy for the inno-
vation creating industry’s intended revenue
in that category. We follow Popp (2002) in
specifying an estimation model consistent
with expected prices (the independent vari-
ables in equations (6) and (7)) following an
adaptive expectations process. To deal with
the possibility that expected marginal costs
of innovating on particular inputs vary by
state and time, we include three additional
control variables. They are (a) a knowledge
stock variable to account for overall differ-
ences in marginal costs of research across
states, (b) the lagged dependent variable as a
proxy for state of knowledge and differences
in expected marginal costs across states in
a specific innovation area as well as sticki-
ness in adjusting research expenditures to
a long-run equilibrium, and (c) year fixed
effects to account for secular changes in the
relative expected marginal cost of innovating
in a specific innovation area in addition to
exogenous factors that change innovation
globally.

This results in the following estimation
equation for the resource allocation decision:

(Rist/Rjst) = c0[E(Pist)/E(Pjst)]c1 Rst
c2 Sst

c3(8)

× [Rist−1/Rjst−1]c4 eλijt εijst

where Rist is public research expenditure
on input i in state s in year t (i and j repre-
sent the pair f and a or e and l), E(Pist) is
expected price of input i in state s in year t in
the agricultural (innovation implementing)
industry and consequently expected output
price in the public innovation creating indus-
try,7 Rst is total public research expenditures
in state s in year t, Sst is the stock of patents
issued for agriculture as the source of use
industry in state s in year t,8 λijt is year fixed
effect, and εijst is the multiplicative regres-
sion error whose conditional expectation is
assumed to be one. The variable Rst controls

7 The use of within-state relative price variation to identify
induced innovation also helps to distinguish motivational differ-
ences between public and private research funding decisions. As
pointed out by an anonymous reviewer, it seems likely that state-
specific price shocks would impact state-level public research
funding more than private research funding. Private research is
expected to generally seek larger markets by developing research
outputs that could be used in multiple states.

8 We lack data on patents aimed at saving specific inputs in
the implementing industry. Consequently, it is not possible with
this proxy to distinguish differences in expected marginal costs
in a specific innovation area.

for scale and potential nonhomotheticity of
the whole innovation creating industry of the
state. Although we maintain linear homo-
geneity (which implies homotheticity) in
the model structure, we include this control
variable because our four outputs are not an
exhaustive array of inputs in the innovation
implementing industry and it permits us to
treat homogeneity (and homotheticity) in
the estimation model as a local rather than
a global property. The patent stock variable
Sst is included in the model as a proxy for
the general state of agricultural innovation
knowledge in state s in year t. Support for the
IIH conditioned on a convex two-level CET
innovation production function is provided if
c1 is significantly positive.

Because of the large number of zero
allocations in our data set, we do not log-
linearize equation (8) as is sometimes done
to perform linear estimation. Rather, we
estimate each equation directly using pseudo-
Poisson maximum likelihood (PPML).9
Estimation is performed using the likelihood
that is generated from a joint Poisson distri-
bution with conditional mean E(Y | X) = eXβ,
where Y is the dependent variable, X is a
1 × k vector of independent variables, and β
is a k × 1 vector of parameters. This means:

E[(Rist/Rjst)|Pist , Pjst , Rst , Sst , Rist−1(9)

/Rjst−1, λijt]
= exp{ln(d0) + d1 ln[E(Pist)/E(Pjst)]

+ d2 ln(Rst) + d3 ln(Sst)

+ d4 ln(Rist−1/Rjst−1) + λijt}.
As noted in Gourieroux, Monfort, and

Trognon (1984), a consistent estimator of the
parameters is obtained even if the data are
not Poisson (indeed, the data do not even
have to be integers). The advantage of PPML
over ordinary least squares (OLS) in the log-
linearized equation is twofold: first, since the
dependent variable is not specified in logs,
values of zero are permissible (in fact, PPML
performs well even with a large number of
zeros for the dependent variable; see Santos
Silva and Tenreyro 2011).10 Second, under the
assumption that the true conditional mean is

9 We are indebted to an anonymous referee for pointing us to
this estimation technique.

10 This estimation technique increases sample sizes that can
be used in estimation by 17%–33% compared to pooled OLS
estimation of the log-linearized model.
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as specified above, the OLS estimator asso-
ciated with the log-linearized equation is
biased in the presence of heteroskedasticity
(Santos Silva and Tenreyro 2006). Further-
more, PPML is generally more efficient than
other common nonlinear estimators such
as nonlinear least squares (Santos Silva and
Tenreyro 2006).

Zero values of the numerator of the
dependent variable can be accommodated
with the PPML estimator, but zero values
of the denominator cannot. In the above
specification we have deliberately chosen
the denominators, land and labor, to ensure
the largest number of observations in the
estimation of each equation.11

While a significant negative coefficient
on the price ratio is typically used to test
the induced innovation hypothesis when
input quantity ratios in the innovation imple-
menting industry are used as the dependent
variable, such a test is not critical unless inno-
vation possibilities are neutral. In our case,
assuming our controls sufficiently account
for differences in marginal costs across
states, a significant positive d1 coefficient
in the model constitutes an unambiguous
critical test of the hypothesis for the public
innovation creating industry regardless of
whether innovation possibilities are neutral
or nonneutral.

Expected price is defined as a geomet-
rically lagged function of historical prices
and is designed to capture expected input
prices in the innovation implementing indus-
try by giving more weight to recent than to
earlier prices. Because of likely lags in the
impact of any price changes, we begin the
geometric lag with prices lagged one year and
consider only the previous ten years of price
data. Thus, expected price in t is constructed
as: E(Pist) ≈ σPist−1 + σ(1 − σ)Pist−2 + σ(1 −
σ)2 Pist−3 + · · · + σ(1 − σ)9Pist−10, (where σ is
the geometric lag coefficient). The optimal

11 Because of the large number of zero values in the data, we
also estimated a linear probability model in which the dependent
variable was equal to one if there was positive innovation funding
(funding of at least one project) to save a particular input in
that year and zero otherwise. This was done for each of the four
inputs. Independent variables included all four input prices, a
binary variable for the decision to fund at least one project last
year (lagged dependent variable), and the remaining explanatory
variables in equation (8). These models provided no support for
the IIH. The decision of whether or not to fund at least one
project aimed at saving a particular input seems to have been
determined almost entirely by the past decision to fund (or not
to fund). After controlling for the lagged dependent variable,
changes in input prices explained little of the funding decision
on the extensive margin.

lag is selected based on the Akaike informa-
tion criterion from values of 0.1 to 0.9 in 0.1
intervals.

Data

The data used for this study included total
public research expenditures for agricul-
tural productivity research, public research
expenditures on technology aimed to save
particular agricultural inputs, agricultural
input prices for the same array of inputs, and
patents issued for agriculture as the source of
use industry.

Total annual public research expenditures
for the period 1927–2009 were obtained
for each state from Huffman (2012). They
were compiled following the procedures in
Huffman (2009). They included both fed-
eral (U.S. Department of Agriculture) and
state (State Agricultural Experiment Stations
and Veterinary Medicine Schools/Colleges
of the Land Grant System) expenditures
on agricultural research with a productivity
focus.12 They excluded post-harvest research
and research on households, families, and
communities.

The number of patents issued for agricul-
ture as the primary user of the patent was
obtained for each state from Johnson (2013)
for the period 1997–2008. The number of
patents for earlier years was from Johnson’s
(2005) inventory of patents by state and U.S.
patents by industry as the primary user of the
patent for the period 1883–1996. The number
of patents by state for agriculture as the pri-
mary user was prepared by multiplying the
percent of patents granted by state each year
by the number of patents granted in the U.S.
for use in agriculture. Johnson’s patent clas-
sification since 1976 follows the international
protocol, and the Yale Technology Concor-
dance (Johnson and Evenson 1997) was used
to calculate industries of manufacture and
sectors of use. Prior to 1976, the Wellesley
Technology Concordance (Johnson 1999) was
followed to classify patents. The knowledge
stock was prepared following Wang et al.’s
(2013) nineteen-year trapezoidal lag struc-
ture. Using weights based on the trapezoidal

12 Federal funding of agricultural research in Maryland was
excluded from the data set because it is dominated by research
along the Washington DC beltway and because state outcomes
are not evident in most of their project objectives.
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structure (with positive weights beginning in
the second lagged year, peaking in years 7–10,
and declining through year 18), patent knowl-
edge stocks for agriculture were calculated
for each state for the years 1998–2010.

Annual public expenditures on research
aiming to save or more efficiently utilize
specific agricultural inputs were obtained
by keyword searches (with exclusions) of
the U.S. Department of Agriculture’s Cur-
rent Research Information System (CRIS).
This database inventories research projects
supported by the U.S. Department of Agri-
culture, other federal agencies, and State
Agricultural Experiment Stations. The inven-
tory includes number of projects, scientist
years working on each project, annual expen-
ditures on each project, state where the
research was conducted, detailed descrip-
tions and outcomes of each project, and
classification by knowledge area, subject
of investigation, and field of science. The
searches, conducted by Sellers (2012) in
collaboration with the authors, began in
February 2012, were refined during the
subsequent months, and the final searches
were conducted in July 2012.13 All projects
reported in the system for the period 1998–
2010 were searched.14 These include research
projects supported by federal grant funds
conducted both at land grant and non-land
grant universities.

Following examination by the authors
of project narratives from preliminary
text searches, it was concluded that public
research expenditures on projects seeking to
save inputs could be reliably identified for
only four input categories—labor, land, fer-
tilizer, and energy. This is not an exhaustive
array of inputs. It omits research that would
save non-land capital as well as materials
other than fertilizer and energy.

Additional preliminary text searches were
conducted and the project narratives sys-
tematically reviewed by the authors to
ensure that an objective of the selected
research projects was to develop technology
to save the specified category of inputs. The

13 We are deeply indebted to Katelyn Sellers at the USDA
National Institute of Food and Agriculture for her many hours
working with us to determine the best protocol for each search
and for conducting the database searches.

14 Because of a change in the CRIS classification system in
1997 and the lack of textual data for earlier years, it was not
possible to obtain reliable expenditure data for research aimed
to save specific agricultural inputs prior to 1998.

keywords used in the final search for each
input category are reported in table 1.

We began the searches with the same
exclusions that Huffman imposed in his
2003 CRIS search of research focusing on
agricultural production (Huffman 2009).
This excluded projects that were clearly not
related to agricultural productivity, that is,
projects that addressed only the following
subjects of investigation: recreation resources;
trees, forests, and forest products; fish, shell-
fish, game and fur-bearing animals, and other
wildlife and their habitats/wildlife and natural
fisheries management, endangered species;
food and manufactured resources (except
for farm structures and related facilities, as
well as drainage and irrigation facilities and
systems); human resources, organization,
and institutions (except the farm as a busi-
ness enterprise); other technologies.15 We
subsequently added the following subject
of investigation exclusions to our searches
for research projects aimed at saving par-
ticular agricultural inputs: watersheds and
river basins; atmosphere; ornamentals, and
turf; noncrop plant research; general plant
research; horses, ponies, and mules; pets
(companion animals); laboratory animals;
other animals, general; cross-commodity
research—multiple animal species; animal
research, general; microorganisms. To avoid
selection of energy projects aimed only at
saving nutrient energy, the following key-
words were also excluded from the energy
saving project search: amino acid, body
composition, calorimetry, diet, digestibil-
ity, digestion, feed, metabolism, nutrient,
nutrition, pH, rumen.

Over the 1998–2010 period, the fraction of
total research funds coming from “other non-
federal” (private) sources steadily increased
from less than 10% in 1999 and 2000 to
roughly a quarter in 2009 and 2010. The aver-
age percentage over the data period was just
over 16%. Because we are analyzing ratios of
research expenditures to save various inputs,
this change in funding source should have
little effect on our analysis unless private
funds went predominantly to funding inno-
vation to save some inputs but not others
(the inclusion of year fixed effects further
reduces the possibility that this change would

15 This list of excluded subjects of investigation uses the terms
in the current classification system. They are identified in Huffman
(2009) using the earlier commodity and research problem area
classification system.
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Table 1. Keywords Used in CRIS Searches of Public Research Projects Seeking to Create
Input-Saving Technology for the Agricultural Production Sector

Labor Saving Land Savinga Fertilizer Saving Energy Saving

labor cost production efficiency fertilizer placement energy conservation
labor efficiency(ies) production potential fertilizer requirements energy cost
labor productivity(ies) yield potential fertilizer response energy demand
labor reduction energy efficiency(ies)
labor saving energy input

energy usage
energy use
energy utilization

aWhile the terms production efficiency and production potential might be associated with other types of research, examination of the project narra-
tives revealed that the goal of such research was primarily land saving.

cause bias in our results). However, because
we expect that innovation funded through
private means would be more sensitive to
agricultural input prices (more likely to
be subject to the IIH) than would publicly
funded research, it is possible that there is
more support for the IIH using CRIS data
in later years than in earlier years. Unfortu-
nately, our panel is extremely short and does
not allow us to reliably test for differences in
IIH support over time. We leave this question
to future research.

The panel data of annual agricultural input
prices for the forty-eight contiguous states
came from the U.S. Department of Agricul-
ture. See Ball, Hallahan, and Nehring (2004)
and Ball et al. (1999) for the construction
details. These data were compiled using
theoretically and empirically sound proce-
dures that preserve the economic integrity of
national and state production accounts and
are consistent with a gross output model of
production. The state-level input price indices
were constructed as multilateral chain-linked
Elteto-Koves-Szulc (EKS) indexes of prices
for exhaustive arrays of input types in each
category in each state and year.

The land price index was computed from
hedonic regressions of the price of land
(implicit rental rates) in each county on a
vector of land characteristics. For labor, the
price index was computed from a gender,
age, education, and employment class cross-
classification of hours worked and average
hourly compensation. Wage rates for self-
employed workers were imputed as the wage
of hired workers with the same demograph-
ics. The fertilizer price index was computed
from hedonic regression results of prices of
fertilizers on nutrients in the fertilizer mate-
rials. The energy price was computed from
electricity, natural gas, and individual fuel

prices. All intertemporal aggregations across
individual inputs were computed as Tornqvist
indexes.

Because of the limitations associated with
obtaining accurate public research expen-
diture data for input saving research, we
only utilize input prices that correspond to
the research expenditure categories—land,
labor, fertilizer, and energy. The price data for
land and labor were available for the period
1960–2004, and the price data for fertilizer
and energy were available for the period
1960–2008.

Annual data for each of the forty-eight
states for the period 1999–2005 were used
for the dependent variables, 1998–2004 for
their lags, 1989–2004 for prices (because of
the geometric lag structure), and 1999–2005
for total research expenditure and the knowl-
edge stock. Additional data were used in a
set of robustness checks. The extremes of the
data periods used in robustness checks were
1998–2009 for the dependent variable, total
research expenditures, and the knowledge
stock and 1984–2008 for prices.16 Summary
statistics for each variable for these data
periods are reported in table 2.

The distribution of state-level average
annual research funding for the 1998–2009
period to save each of the four agricultural
inputs is presented in figure 1. For each of
the inputs, the distribution is right-skewed
with zero being the modal amount of fund-
ing, although the percentage of non-zero

16 We were unable to extend the Huffman data for total
annual public research expenditures to 2010 because of a major
change in USDA’s data collection procedures. After 2009, the
USDA National Institute of Food and Agriculture no longer
collected research expenditure data on grant supported research.
Beginning in 2010, their total research expenditure data are
limited to research projects supported by state formula funds.
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Table 2. Summary Statistics

Number of
Observation Mean Minimum Maximum Standard Non-Zero

Variable Unita Period Value Valueb Value Deviation Observations

Fertilizer research $T 1998–2005 284.9 3 2,698 497.3 196
expenditure $T 1998–2009 255.3 3 2,698 450.8 284

Land research $T 1998–2005 4,758 60 31,179 5,260 366
expenditure $T 1998–2009 4,906 31 34,646 5,396 552

Energy research $T 1998–2005 209.4 4 3,280 468.2 152
expenditure $T 1998–2009 211.7 1 3,280 447.3 247

Labor research $T 1998–2005 300.8 1 4,718 637.6 215
expenditure $T 1998–2009 363.4 1 5,662 731.9 325

Fertilizer price index 1989–2004 0.725 0.323 1.253 0.175 768
index 1984–2008 0.724 0.041 1.673 0.224 1,200

Land price index 1989–2004 1.044 0.195 3.632 0.543 768
index 1984–2004 1.019 0.195 3.632 0.516 1,008

Energy price index 1989–2004 1.141 0.825 1.883 0.195 768
index 1984–2008 1.303 0.787 3.496 0.488 1,200

Labor price index 1989–2004 0.801 0.280 2.111 0.294 768
index 1984–2004 0.707 0.211 2.111 0.310 1,008

Total research $M 1999–2005 21.16 0.490 106.4 18.30 336
expenditure $M 1998–2009 21.19 0.175 127.6 19.26 576

Knowledge stock count 1999–2005 37.18 1.216 290.5 48.61 336
count 1998–2009 37.36 1.185 292.2 48.17 576

aThe index is relative to the price in Alabama in 1996; $T is thousand dollars, $M is million dollars.
bMinimum values for research expenditure are for cases where at least one project was funded.
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Figure 2. Ratios of average state-level research funding and lagged prices

observations is always at least 40% (for
energy) and as high as 96% (for land).

Ratios of average state-level research fund-
ing are plotted over time along with price
ratios in figure 2. Prices are lagged one year
in the first row of graphs and five years in
the second row. No obvious patterns were
evident between the two series when prices
were not lagged or lagged just one year. Pat-
terns begin to emerge, however, when prices
are lagged five years.

Test Results

The PPML statistical estimates for the public
agricultural research resource allocation
decision model are reported in table 3.
Estimates of the resource allocation deci-
sions to save fertilizer relative to land and
energy relative to labor are reported in the
first two columns of the table. The remain-
ing columns report estimates of the other
input-saving resource allocation ratios, which
we discuss below under robustness checks.
With heteroskedasticity and autocorrelation
likely to impact these models, we compute
standard errors that are robust to both het-
eroskedasticity and autocorrelation for all

estimated models. The robust standard errors
are calculated using the clustered sandwich
estimator using the state as the unit of cluster
(Wooldridge 2002).17 All estimates of the
effect of own-price ratio on the resource allo-
cation ratios are equivalent to elasticities (for
small changes in the independent variable).
A 10% level of significance is used to judge
statistically significant results.

The fertilizer/land resource allocation deci-
sion has a positive sign on expected price
that is significant and is thus consistent with
the IIH. The estimated coefficients on the
lagged dependent variable and total research
expenditure are also both positive and sta-
tistically significant in this equation. The

17 Inference based on the cluster-robust standard error esti-
mator depends both on the number of clusters (Bertrand, Duflo,
and Mullainathan 2004; Kezdi 2004) and how similar the clusters
are in size (Mackinnon and Webb 2014; Carter, Schnepel, and
Steigerwald 2013). In this article, the number of clusters is fairly
small (ranging from 23 to 40), and the clusters are not fully
balanced due to missing state-year observations. Based on linear
models, Kezdi (2004) argues that the small-sample properties
of the cluster-robust standard error estimator are quite good,
and Rogers’ (1993) simulation results imply that the estimator
would suffer from very small bias with as few as 20 equal-sized
clusters. However, inference can be misleading if the clusters
are severely unbalanced (Carter, Schnepel, and Steigerwald 2013;
Mackinnon and Webb 2014). While recognizing this possibility,
we have chosen to cluster at the state level to allow for arbitrary
correlation within a state over time.
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Table 3. PPML Statistical Estimates of Resource Allocation Modela

Fertilizer/ Energy/ Labor/ Energy/ Fertilizer/ Energy/
Variable Land Labor Land Land Labor Fertilizer

Own-price ratio 0.468∗∗∗ −1.472 0.392 0.589∗∗∗ 2.477∗∗ 3.563∗∗∗
(0.181) (0.607) (0.311) (0.133) (1.295) (1.347)

P-valueb 0.00493 0.99231 0.10345 0.00001 0.02788 0.00408
Lagged dependent variable 0.883∗∗∗ 0.660∗∗∗ 0.584∗∗∗ 0.631∗∗∗ 0.434∗∗∗ 0.444∗∗∗

(0.098) (0.135) (0.100) (0.074) (0.105) (0.134)
Total research expenditure 0.493∗∗ 0.556 −.068 −.412∗ 0.764∗ −.751∗∗∗

(0.192) (0.348) (0.153) (0.228) (0.434) (0.261)
Knowledge stock −.048 0.064 0.140∗∗ 0.255∗∗ −.402 0.596∗∗∗

(0.081) (0.189) (0.068) (0.120) (0.216) (0.216)
Intercept 1.399 2.427 0.866 −3.766∗∗∗ 5.336∗∗ −5.707∗∗∗

(0.904) (1.864) (1.117) (1.316) (2.230) (1.528)
Geometric lag coefficient 0.1 0.1 0.6 0.9 0.4 0.3
R-square 0.748 0.682 0.378 0.854 0.478 0.611
Log-likelihood −53.04 −90.73 −58.38 −34.55 −229.6 −189.9
Number of observations 173 73 183 134 96 84

aRobust standard errors are in parentheses. The t-tests conducted for the coefficients on own price ratio are one-tailed tests (with the null hypoth-
esis being that the coefficient is less than or equal to zero). T-tests for coefficients on other regressors are two-tailed tests (null hypothesis that the
coefficient is equal to zero). Asterisk codes: ∗p < .1, ∗∗p < .05, ∗∗∗p < .01. Fixed time effects were also estimated in all models but are not reported.
bP-value for one-sided hypothesis test.

estimated sign on the expected price variable
is significantly negative in the energy/labor
equation, which implies that an increase in
energy price would induce reallocation of
research resources to economize labor rela-
tive to energy. The lagged dependent variable
is also significant in this equation. In both
equations, the magnitude of the coefficient on
the lagged dependent variable suggests that
the resource allocation decision in any year
is strongly dependent on the previous year’s
decision. In fact, they imply that the long-
run effects of other explanatory variables, in
other words, own-price, total research expen-
diture, and knowledge stock, is 2.9–8.5 times
as great as the short-run effects in explaining
resource allocation. In both equations, opti-
mal expected price lag coefficients are 0.1,
which imply very long lags in formation of
price expectations (median 6.6 years).18 The
regressors in these equations explain 68%–
75% of the variance. Since all regressors
(other than the time dummies) are specified
in logarithmic form for PPML estimation,
observations with a zero value of the lagged
dependent variable are removed from the
data set. This results in only 73 observations
being used in the energy/labor equation
and 173 observations in the fertilizer/land
equation.

18 Median lag and mean lag are calculated by − log(2)/

log(1 − σ) and (1 − σ)/σ, respectively.

Robustness Checks

To examine the robustness of our ini-
tial results, we consider several plausible
alternatives:

A. Because the logic for output pairings
in our specification of the two-level
CET production function is not very
strong, we also test for consistency
with the IIH by considering the other
possible pairings in the resource allo-
cation decision stage of the estimation.
Therefore, we test for consistency with
the IIH using the exhaustive pairs of
labor/land, energy/land, fertilizer/labor,
and energy/labor.19

B. To generalize the two-level CET produc-
tion function, we include all three price
ratios in the resource allocation decision
stage of estimation. The same denom-
inator is used for all price ratios and is
consistent with that of the dependent
variable.

C. As already noted, our data periods do
not match perfectly. Our most recent
price data are 2008 for fertilizer and
energy and 2004 for land and labor; we
have research expenditure data to save
individual inputs through 2010 and total

19 We do not switch numerator and denominator to complete
the array of permutations because it further reduces the number
of observations.
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research expenditure through 2009. To
utilize more of the available data, we use
four additional years of observations by
starting the geometric lag of prices at
five years.

D. Because we have more recent price data
for fertilizer and energy, we also use
all available data for the fertilizer and
energy resource allocation decision with
the geometric lag of prices starting at
one year.

E. Imposing the assumption of global con-
stant returns to scale (and consequently
homotheticity), our final robustness
check removes total research expen-
diture from the set of regressors in all
models.

The IIH test results from robustness alterna-
tive specification A are reported in table 3.
Three of the four additional equations
(energy/land, fertilizer/labor, and energy/
fertilizer) provide significant consistency with
the IIH. The lagged dependent variable and
total research expenditure are significant
in all three of these equations and knowl-
edge stock in two. Expected price formation
is rapid in one and relatively slow in two.
R2 values range from 0.48 to 0.85. For pur-
poses of examining other robustness checks,
we treat the initial two equations and the
additional four equations in Alternative A
as the base model since they represent the
exhaustive output pairings.

The IIH test results from the Robustness
alternative specifications B–E are reported
in table 4. With the exception of alternative
D, six equations were estimated to provide
all ratio combinations for each of these alter-
native specifications. Only one equation,
the energy/fertilizer ratio, was estimated for
alternative D.

Considering all price ratios as explanatory
variables in each equation (alternative B),
the fertilizer/labor and energy/fertilizer equa-
tions again provide statistically significant
support for consistency with the IIH, and the
energy/labor equation again provides statis-
tically significant support for the opposite.
Considering longer price lags (alternative
C), the fertilizer/land, energy/land, fertil-
izer/labor, and energy/fertilizer equations are
consistent with the IIH, as they are in the
base model. The energy/labor equation again
has a negative statistically significant coef-
ficient on the price ratio. When additional

price data for energy and fertilizer are used
with a one-year lag on initial price effects
(alternative D), the price-ratio effect is pos-
itive and statistically significant (consistent
with IIH). With total research expenditure
removed from the set of regressors (alterna-
tive E), the results are qualitatively the same
as for the base model.

For two output pairings, fertilizer/labor
and energy/fertilizer, all robustness checks
provide statistically significant support for
the IIH. Three of four specifications of the
fertilizer/land and the energy/land equa-
tions also support consistency with the IIH.
No energy/labor or labor/land equations
support the IIH. In fact, all energy/labor
equations have significant negative coeffi-
cients on the price ratio. Thus, conclusions
for the base model and all robustness checks
are consistent for four of the six pairings.
The fertilizer/labor and energy/fertilizer
pairings provide unambiguously significant
support for the IIH and the energy/labor and
labor/land pairings provide no support. The
other two pairings generally support the IIH.

Overall, fertilizer provides the greatest
support (92% of its estimated equations) for
consistency with the IIH. It is followed by
energy with 62%, land with 50%, and labor
with 33% of estimated equations supporting
the IIH. If we were to subtract the number
of significant negative responses (not noted
by asterisks in the tables) from the number of
significant positive responses, fertilizer would
still provide the greatest net support with
92% of its equations. It would be followed by
land with 50% and energy with 31%. Labor
provides no net support.20

Counter to expectations based on the
patterns exhibited in figure 2, no additional
support for significant consistency with the
IIH is demonstrated by the models based

20 In order to access more of the data, an alternative model
specification was estimated by substituting state fixed effects for
the lagged dependent variable as a means of accounting for dif-
ferences in innovation area-specific marginal costs across states.
This results in 300, 182, 317, 285, 175, and 170 observations being
used for the two initial equations and the four equations in alter-
native A, respectively. With this specification, only eight of the 25
equations supported the IIH at the 10% significance level. The
lower level of support with this specification might be because
resource allocations adjust gradually. Without controlling for grad-
ual adjustment via the lagged dependent variable, evidence of the
IIH was reduced. As a further check, we examined whether the
larger number of observations was responsible for this lower level
of support by reestimating this alternative specification using the
same observations as with the lagged dependent variable specifi-
cation. The support for the IIH dropped by a quarter, reinforcing
the conclusion that resource allocations adjust gradually.
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Table 4. Own-Price Ratios, Robustness Alternative Specifications B-Ea

Number Geometric Total Own- Robust Optimal
of Price Lag Begins Research Price Estimated Standard R2 Geometric Number of

Specification Ratios with Year Expenditure Ratiob Coefficient Error P-Valuec Value Lag Coefficient observations

Alternative B – All
price ratios

3 1 Yes F/A −.749 0.730 0.84774 0.787 0.3 173
E/L −4.025 1.002 0.99997 0.763 0.7 73
L/A −.002 0.245 0.50340 0.407 0.9 183
E/A 0.790 0.721 0.13678 0.879 0.8 134
F/L 2.532∗∗∗ 0.974 0.00468 0.505 0.5 96
E/F 4.545∗∗∗ 1.580 0.00201 0.680 0.4 84

Alternative C –
Longer price lags

1 5 Yes F/A 0.454∗∗∗ 0.173 0.00430 0.645 0.2 259
E/L −.545 0.415 0.90559 0.601 0.9 130
L/A 0.196 0.229 0.19699 0.376 0.1 297
E/A 0.563∗∗∗ 0.147 0.00006 0.782 0.8 217
F/L 1.171∗ 0.885 0.09287 0.389 0.1 152
E/F 2.282∗ 1.526 0.06736 0.434 0.9 127

Alternative D –
One-year price
lags with price
data through 2008

1 1 Yes E/F 3.347∗∗∗ 1.204 0.00272 0.434 0.5 127

Alternative E – No
total research
expenditure

1 1 No F/A 0.833∗∗∗ 0.086 0.00540 0.726 0.1 173
E/L −1.362 0.598 0.98868 0.690 0.1 73
L/A 0.377 0.311 0.11265 0.387 0.6 183
E/A 0.615∗∗∗ 0.163 0.00008 0.823 0.9 134
F/L 2.227∗ 1.384 0.05375 0.385 0.4 96
E/F 3.434∗∗∗ 1.401 0.00713 0.559 0.3 84

aAll allocation decision models were estimated with time fixed effects. Asterisk codes: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
bInput codes: A is land, E is energy, F is fertilizer, L is labor.
cP-value for 1-sided hypothesis test.
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on a price expectation beginning with prices
lagged five years than by those with prices
lagged one year.21 The level of support
was the same for all model specifications
except alternative B (with all price ratios
included as regressors).

Conclusions

We examine the applicability of the induced
innovation hypothesis (IIH) to U.S. public
agricultural research using the pseudo Pois-
son maximum likelihood estimator. In doing
so, we report what could be referred to as the
first direct test of the IIH for U.S. agriculture.
It is the first time that a test has been con-
ducted for this industry accounting for supply
as well as demand for new technology aimed
at saving inputs. However, our tests are really
tests of congruence between the hypothesis
and resource allocation in public research.
Due to lack of data to estimate the expected
marginal costs of developing new technology
to save different inputs, we take a reduced-
form approach to testing the hypothesis. We
test whether relative input prices in the tech-
nology implementing industry (agriculture)
affect resource allocation decisions by the
public technology creating industry (federal
government and state agricultural experiment
stations) that increase relative research effort
aimed at saving the relatively more expensive
input across states and over time.

Considering several plausible specifica-
tions of the resource allocation decision, we
find support for consistency between the
IIH and public agricultural research fund-
ing decisions in four of six pairings. For two
pairings, all specifications provide empirical
results consistent with the IIH. For two more,
three of four specifications do. Although not
unambiguously supportive, the evidence col-
lectively provides considerable evidence of
consistency with the IIH in public research
resource allocation decisions for four of six
input pairings. The evidence is strongest
for decisions to allocate research resources
aimed at saving fertilizer relative to energy
or labor. There is also substantial support
for decisions to allocate research resources
to save land relative to fertilizer or energy.

21 While the largest weight is given to the price in the first
lagged year, the geometric lag price expectation also considers
prices in the previous nine years.

There is no support in research funding deci-
sions aimed at saving labor relative to land
or energy. In fact, decisions regarding the
last input pairing are significantly counter to
the IIH.

We treat the public agricultural research
(technology creating) industry in each state
as though it were a perfectly competitive
firm, motivated by changes in the prices of
inputs in the technology implementing indus-
try. While there is evidence that public sector
organizations operating in a mixed market
such as research and development can mimic
private firms whose principal behavioral
guide is profit maximization, there are also
reasons not to expect profit maximization to
be their primary guide. For example, more
basic or risky research is typically selected
by the public sector, and increased public
(or private) research has potential to crowd
out the other. Consequently, the degree of
support found for the IIH in public agricul-
tural research resource allocation decisions
in this article represents a lower bound esti-
mate of what could be expected from private
research decisions that are clearly profit
motivated.

The degree of support provided by this
research for the IIH in U.S. public agricul-
tural research funding decisions, which also
provides support for its relevance in U.S.
agricultural production, comes with several
caveats. Although we included a control
variable for homotheticity in the estimation
model, we imposed the commonly main-
tained but strong assumption of a locally
homothetic production function in the theo-
retical structure of public research underlying
our tests. Because of data limitations, we
were unable to examine private research
decisions. Although we have defended our
public research expenditure data as likely
far less noisy than other data that might be
used to proxy innovation discovery efforts
to economize “the use of a factor which has
become relatively expensive” (Hicks 1932),
they are still very noisy. The search procedure
for selecting relevant projects was far from
perfect. The inclusion of a patent knowl-
edge stock and lagged dependent variable
to control for state differences in expected
marginal cost of developing and implement-
ing input-saving technologies is just one
possible approach that might be taken to
surmount data limitations. All of the short-
comings of the study suggest opportunities
for further inquiry.
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